
Vibrations and waves caused by water drops. (Image courtesy of erwan bazin on Flickr. License CC BY-NC-SA.)
By Joe Pickett, OCW Publication Director
Good, good, good, good vibrations . . . are not just fundamental to love, but to the structure of the universe itself.
In fact, “without waves and vibrations, we would not be able to even recognize this universe,” says Professor Yen-Jie Lee, in his introductory video to Physics III: 8.03SC Vibrations and Waves, a course just published on OCW.
Think about it: light, sound, brain activity, and even gravitation all involve vibrations and waves. These phenomena are everywhere. To understand them is to understand the universe.
The latest OCW Scholar course, 8.03SC has a tsunami of resources for those interested in discovering the physics that describe these phenomena. The course site has full video lectures, lecture notes, problem sets, exams with solutions, and a free online textbook. A second series of videos by Professor Wit Busza shows how to think about and solve problems.
Like other Scholar courses, 8.03SC is arranged sequentially, by learning units, so you can progress through the semester just the way Professor Lee’s students did. But there’s also a handy resource index to help you quickly zero in on specific resources that might be of interest.
As the description says, “This course will provide you with the concepts and mathematical tools necessary to understand and explain a broad range of vibrations and waves. You will learn that waves come from many interconnected (coupled) objects when they are vibrating together. We will discuss many of these phenomena, along with related topics, including mechanical vibrations and waves, sound waves, electromagnetic waves, optics, and gravitational waves.”
Demos to Make It Real
In most lectures, Professor Lee conducts reality-checks for the mathematics he presents by including a variety of physical demonstrations. You’ll see how sound waves can propagate across different systems, how a moonwalk works by having one wave moving forward over another moving backward, how optical fiber transmission is made possible by the way light waves bounce off surfaces, and much, much more. For user convenience, each lecture section also lists the demos separately, so you can go directly to the demos if you like.
Insights into How It Is Taught
In his video Instructor Insights, Professor Lee explains why these demonstrations are so important, how he weaves them into his lectures, and how they must be carefully staged before each lecture. In other insights, he shares further pedagogic stratagems, like how he uses humor to enliven his lectures and reinforce student learning, how he employs questionnaires to adjust the pace of the course to the particular mix of students in a given class, and how and why he has changed the course from the way it was previously taught.
So why not explore 8.03SC? You might catch a wave and find that you’re sitting on top of the world!
nice post and usefull