
One of the sound design exercises in 21M.380 challenges students to synthesize a steam train drive-by, with each group working on a different sound related to that problem. (Steam train photo is in the public domain, from Flickr Commons.)
By Joe Pickett, OCW Publication Director
People love sound effects. They have for generations. Just think of the original King Kong’s roar, created for the 1933 film by weaving together lion and tiger roars and playing them backwards. What would the movie be without that signature sound?
Certain sound effects are so iconic they have legs, so to speak. Like that bird whose call tells you the setting is deep in the jungle, no matter the continent. Or the scream of the guy who meets his doom by being attacked or falling from a cliff. That same scream has been used again and again in over 50 years of movies.
And what about those sounds that must be fully imagined? Like those space ships careering across the galaxy? The sound of the engines is so compelling the audience is happy to forget that, in the vacuum of space, sound does not exist. How did that sound get made?
Actually, it was designed. Design is a key part of the MIT “mind and hand” education. The art and science of sound design is the subject of 21M.380 Music and Technology: Sound Design, the latest in a series of courses on sound and technology that OCW has up on its site.
This most recent publication reflects the teaching of Dr. Florian Hollerweger, a sound artist and sound technology researcher in MIT’s Department of Music and Theater Arts.
Teaching with Technology (and Without)
The course site has lecture notes, readings, assignments, and samples of student projects through multiple iterations, so you can see how the projects evolved. MIT students and OCW learners alike benefit from the course’s use of a free open-source program called Pure Data. Dr. Hollerweger’s extensive notes include linked audio samples and working examples of Pure Data code, creating a dynamic learning experience.
Dr. Hollerweger explains the central practice of the course in his Instructor Insights page, “Course Inspiration and Design“:
. . . we take real-world sounds and try to understand how they work. We then recreate them from scratch without using any recordings. Instead we rely on oscillators, noise generators, and filters, which we control through computer programs that students learn to write as part of the course . . . The prospect of engaging with students in the process of aestheticizing everyday sound experiences was a major impetus for teaching the course.
Learning to Listen
Before creating sounds, students must first learn how to listen. Or, as Dr. Hollerweger puts it, “Your main tool for sound design is really your ears.” The soundwalk assignment is where it all begins. The students
. . . describe, in as minute detail as possible, their aural experience from a listening excursion that we conduct across the MIT campus together. This assignment teaches them to verbalize their sonic impressions and communicate them to others. It trains students’ ears to attend not only to individual sound sources, but also to flutter echoes, comb filters, and other subtle acoustics effects that are due to the abutting architecture.
In other Instructor Insights, Dr. Hollerweger explains how he uses surveys to get to know his students and to tap their various talents, how he gets them learning actively in groups (he employs only the shortest of lectures), how he teaches the iterative design process, and how he assesses and grades creative projects.
Offering Advice
A lot of the instruction takes place the old-fashioned way—meeting one on one during office hours:
[Applause!]A lot of the support I offer students during the design process occurs during office hours. This is because their projects are so individualized. Every student has to come up with their own idea. When a student gets stuck, we need to get together to identify the key challenges of their design through an open-ended discussion.
21M.380 is but the latest course in which instruction in the iterative design process is represented on OCW. Some other recent examples are CMS.611J Creating Video Games, 6.811 Principles and Practice of Assistive Technology, and 20.219 Becoming the Next Bill Nye: Writing and Hosting the Educational Show.